\(\int \frac {x^{5/2} (a+b x^2)^2}{c+d x^2} \, dx\) [416]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 290 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=\frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}+\frac {c^{3/4} (b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}+\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}} \]

[Out]

2/3*(-a*d+b*c)^2*x^(3/2)/d^3-2/7*b*(-2*a*d+b*c)*x^(7/2)/d^2+2/11*b^2*x^(11/2)/d+1/2*c^(3/4)*(-a*d+b*c)^2*arcta
n(1-d^(1/4)*2^(1/2)*x^(1/2)/c^(1/4))/d^(15/4)*2^(1/2)-1/2*c^(3/4)*(-a*d+b*c)^2*arctan(1+d^(1/4)*2^(1/2)*x^(1/2
)/c^(1/4))/d^(15/4)*2^(1/2)-1/4*c^(3/4)*(-a*d+b*c)^2*ln(c^(1/2)+x*d^(1/2)-c^(1/4)*d^(1/4)*2^(1/2)*x^(1/2))/d^(
15/4)*2^(1/2)+1/4*c^(3/4)*(-a*d+b*c)^2*ln(c^(1/2)+x*d^(1/2)+c^(1/4)*d^(1/4)*2^(1/2)*x^(1/2))/d^(15/4)*2^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {472, 327, 335, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=\frac {c^{3/4} (b c-a d)^2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}+1\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \log \left (-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {c}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}+\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {c}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}+\frac {2 x^{3/2} (b c-a d)^2}{3 d^3}-\frac {2 b x^{7/2} (b c-2 a d)}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d} \]

[In]

Int[(x^(5/2)*(a + b*x^2)^2)/(c + d*x^2),x]

[Out]

(2*(b*c - a*d)^2*x^(3/2))/(3*d^3) - (2*b*(b*c - 2*a*d)*x^(7/2))/(7*d^2) + (2*b^2*x^(11/2))/(11*d) + (c^(3/4)*(
b*c - a*d)^2*ArcTan[1 - (Sqrt[2]*d^(1/4)*Sqrt[x])/c^(1/4)])/(Sqrt[2]*d^(15/4)) - (c^(3/4)*(b*c - a*d)^2*ArcTan
[1 + (Sqrt[2]*d^(1/4)*Sqrt[x])/c^(1/4)])/(Sqrt[2]*d^(15/4)) - (c^(3/4)*(b*c - a*d)^2*Log[Sqrt[c] - Sqrt[2]*c^(
1/4)*d^(1/4)*Sqrt[x] + Sqrt[d]*x])/(2*Sqrt[2]*d^(15/4)) + (c^(3/4)*(b*c - a*d)^2*Log[Sqrt[c] + Sqrt[2]*c^(1/4)
*d^(1/4)*Sqrt[x] + Sqrt[d]*x])/(2*Sqrt[2]*d^(15/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 472

Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[(e*x)^m*((a + b*x^n)^p/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {b (b c-2 a d) x^{5/2}}{d^2}+\frac {b^2 x^{9/2}}{d}+\frac {\left (b^2 c^2-2 a b c d+a^2 d^2\right ) x^{5/2}}{d^2 \left (c+d x^2\right )}\right ) \, dx \\ & = -\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}+\frac {(b c-a d)^2 \int \frac {x^{5/2}}{c+d x^2} \, dx}{d^2} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}-\frac {\left (c (b c-a d)^2\right ) \int \frac {\sqrt {x}}{c+d x^2} \, dx}{d^3} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}-\frac {\left (2 c (b c-a d)^2\right ) \text {Subst}\left (\int \frac {x^2}{c+d x^4} \, dx,x,\sqrt {x}\right )}{d^3} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}+\frac {\left (c (b c-a d)^2\right ) \text {Subst}\left (\int \frac {\sqrt {c}-\sqrt {d} x^2}{c+d x^4} \, dx,x,\sqrt {x}\right )}{d^{7/2}}-\frac {\left (c (b c-a d)^2\right ) \text {Subst}\left (\int \frac {\sqrt {c}+\sqrt {d} x^2}{c+d x^4} \, dx,x,\sqrt {x}\right )}{d^{7/2}} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}-\frac {\left (c (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {c}}{\sqrt {d}}-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+x^2} \, dx,x,\sqrt {x}\right )}{2 d^4}-\frac {\left (c (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {c}}{\sqrt {d}}+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+x^2} \, dx,x,\sqrt {x}\right )}{2 d^4}-\frac {\left (c^{3/4} (b c-a d)^2\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{c}}{\sqrt [4]{d}}+2 x}{-\frac {\sqrt {c}}{\sqrt {d}}-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} d^{15/4}}-\frac {\left (c^{3/4} (b c-a d)^2\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{c}}{\sqrt [4]{d}}-2 x}{-\frac {\sqrt {c}}{\sqrt {d}}+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} d^{15/4}} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}-\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}+\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}-\frac {\left (c^{3/4} (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}+\frac {\left (c^{3/4} (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}} \\ & = \frac {2 (b c-a d)^2 x^{3/2}}{3 d^3}-\frac {2 b (b c-2 a d) x^{7/2}}{7 d^2}+\frac {2 b^2 x^{11/2}}{11 d}+\frac {c^{3/4} (b c-a d)^2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{d} \sqrt {x}}{\sqrt [4]{c}}\right )}{\sqrt {2} d^{15/4}}-\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}}+\frac {c^{3/4} (b c-a d)^2 \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}+\sqrt {d} x\right )}{2 \sqrt {2} d^{15/4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.64 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=\frac {2 x^{3/2} \left (77 a^2 d^2+22 a b d \left (-7 c+3 d x^2\right )+b^2 \left (77 c^2-33 c d x^2+21 d^2 x^4\right )\right )}{231 d^3}+\frac {c^{3/4} (b c-a d)^2 \arctan \left (\frac {\sqrt {c}-\sqrt {d} x}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}}\right )}{\sqrt {2} d^{15/4}}+\frac {c^{3/4} (b c-a d)^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt {x}}{\sqrt {c}+\sqrt {d} x}\right )}{\sqrt {2} d^{15/4}} \]

[In]

Integrate[(x^(5/2)*(a + b*x^2)^2)/(c + d*x^2),x]

[Out]

(2*x^(3/2)*(77*a^2*d^2 + 22*a*b*d*(-7*c + 3*d*x^2) + b^2*(77*c^2 - 33*c*d*x^2 + 21*d^2*x^4)))/(231*d^3) + (c^(
3/4)*(b*c - a*d)^2*ArcTan[(Sqrt[c] - Sqrt[d]*x)/(Sqrt[2]*c^(1/4)*d^(1/4)*Sqrt[x])])/(Sqrt[2]*d^(15/4)) + (c^(3
/4)*(b*c - a*d)^2*ArcTanh[(Sqrt[2]*c^(1/4)*d^(1/4)*Sqrt[x])/(Sqrt[c] + Sqrt[d]*x)])/(Sqrt[2]*d^(15/4))

Maple [A] (verified)

Time = 2.79 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.66

method result size
risch \(\frac {2 x^{\frac {3}{2}} \left (21 b^{2} d^{2} x^{4}+66 x^{2} a b \,d^{2}-33 x^{2} b^{2} c d +77 a^{2} d^{2}-154 a b c d +77 b^{2} c^{2}\right )}{231 d^{3}}-\frac {c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}{x +\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{4 d^{4} \left (\frac {c}{d}\right )^{\frac {1}{4}}}\) \(191\)
derivativedivides \(\frac {\frac {2 b^{2} d^{2} x^{\frac {11}{2}}}{11}+\frac {2 \left (2 a b \,d^{2}-b^{2} c d \right ) x^{\frac {7}{2}}}{7}+\frac {2 \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) x^{\frac {3}{2}}}{3}}{d^{3}}-\frac {c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}{x +\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{4 d^{4} \left (\frac {c}{d}\right )^{\frac {1}{4}}}\) \(192\)
default \(\frac {\frac {2 b^{2} d^{2} x^{\frac {11}{2}}}{11}+\frac {2 \left (2 a b \,d^{2}-b^{2} c d \right ) x^{\frac {7}{2}}}{7}+\frac {2 \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) x^{\frac {3}{2}}}{3}}{d^{3}}-\frac {c \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}{x +\left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{4 d^{4} \left (\frac {c}{d}\right )^{\frac {1}{4}}}\) \(192\)

[In]

int(x^(5/2)*(b*x^2+a)^2/(d*x^2+c),x,method=_RETURNVERBOSE)

[Out]

2/231*x^(3/2)*(21*b^2*d^2*x^4+66*a*b*d^2*x^2-33*b^2*c*d*x^2+77*a^2*d^2-154*a*b*c*d+77*b^2*c^2)/d^3-1/4*c*(a^2*
d^2-2*a*b*c*d+b^2*c^2)/d^4/(c/d)^(1/4)*2^(1/2)*(ln((x-(c/d)^(1/4)*x^(1/2)*2^(1/2)+(c/d)^(1/2))/(x+(c/d)^(1/4)*
x^(1/2)*2^(1/2)+(c/d)^(1/2)))+2*arctan(2^(1/2)/(c/d)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(c/d)^(1/4)*x^(1/2)-1))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 1393, normalized size of antiderivative = 4.80 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=\text {Too large to display} \]

[In]

integrate(x^(5/2)*(b*x^2+a)^2/(d*x^2+c),x, algorithm="fricas")

[Out]

-1/462*(231*d^3*(-(b^8*c^11 - 8*a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 -
56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(1/4)*log(d^11*(-(b^8*c^11 - 8*
a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*
c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(3/4) + (b^6*c^8 - 6*a*b^5*c^7*d + 15*a^2*b^4*c^6*d^2 - 20*a^3*
b^3*c^5*d^3 + 15*a^4*b^2*c^4*d^4 - 6*a^5*b*c^3*d^5 + a^6*c^2*d^6)*sqrt(x)) - 231*I*d^3*(-(b^8*c^11 - 8*a*b^7*c
^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6
 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(1/4)*log(I*d^11*(-(b^8*c^11 - 8*a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 5
6*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d
^8)/d^15)^(3/4) + (b^6*c^8 - 6*a*b^5*c^7*d + 15*a^2*b^4*c^6*d^2 - 20*a^3*b^3*c^5*d^3 + 15*a^4*b^2*c^4*d^4 - 6*
a^5*b*c^3*d^5 + a^6*c^2*d^6)*sqrt(x)) + 231*I*d^3*(-(b^8*c^11 - 8*a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b
^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^1
5)^(1/4)*log(-I*d^11*(-(b^8*c^11 - 8*a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d
^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(3/4) + (b^6*c^8 - 6*a*b^5
*c^7*d + 15*a^2*b^4*c^6*d^2 - 20*a^3*b^3*c^5*d^3 + 15*a^4*b^2*c^4*d^4 - 6*a^5*b*c^3*d^5 + a^6*c^2*d^6)*sqrt(x)
) - 231*d^3*(-(b^8*c^11 - 8*a*b^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a
^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(1/4)*log(-d^11*(-(b^8*c^11 - 8*a*b
^7*c^10*d + 28*a^2*b^6*c^9*d^2 - 56*a^3*b^5*c^8*d^3 + 70*a^4*b^4*c^7*d^4 - 56*a^5*b^3*c^6*d^5 + 28*a^6*b^2*c^5
*d^6 - 8*a^7*b*c^4*d^7 + a^8*c^3*d^8)/d^15)^(3/4) + (b^6*c^8 - 6*a*b^5*c^7*d + 15*a^2*b^4*c^6*d^2 - 20*a^3*b^3
*c^5*d^3 + 15*a^4*b^2*c^4*d^4 - 6*a^5*b*c^3*d^5 + a^6*c^2*d^6)*sqrt(x)) - 4*(21*b^2*d^2*x^5 - 33*(b^2*c*d - 2*
a*b*d^2)*x^3 + 77*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x)*sqrt(x))/d^3

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=\text {Timed out} \]

[In]

integrate(x**(5/2)*(b*x**2+a)**2/(d*x**2+c),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 263, normalized size of antiderivative = 0.91 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=-\frac {{\left (b^{2} c^{3} - 2 \, a b c^{2} d + a^{2} c d^{2}\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} + 2 \, \sqrt {d} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {\sqrt {c} \sqrt {d}} \sqrt {d}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} - 2 \, \sqrt {d} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {\sqrt {c} \sqrt {d}} \sqrt {d}} - \frac {\sqrt {2} \log \left (\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} \sqrt {x} + \sqrt {d} x + \sqrt {c}\right )}{c^{\frac {1}{4}} d^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} \sqrt {x} + \sqrt {d} x + \sqrt {c}\right )}{c^{\frac {1}{4}} d^{\frac {3}{4}}}\right )}}{4 \, d^{3}} + \frac {2 \, {\left (21 \, b^{2} d^{2} x^{\frac {11}{2}} - 33 \, {\left (b^{2} c d - 2 \, a b d^{2}\right )} x^{\frac {7}{2}} + 77 \, {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x^{\frac {3}{2}}\right )}}{231 \, d^{3}} \]

[In]

integrate(x^(5/2)*(b*x^2+a)^2/(d*x^2+c),x, algorithm="maxima")

[Out]

-1/4*(b^2*c^3 - 2*a*b*c^2*d + a^2*c*d^2)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*c^(1/4)*d^(1/4) + 2*sqrt(d)*sq
rt(x))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(sqrt(c)*sqrt(d))*sqrt(d)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*c^(1/4)
*d^(1/4) - 2*sqrt(d)*sqrt(x))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(sqrt(c)*sqrt(d))*sqrt(d)) - sqrt(2)*log(sqrt(2)*c^(
1/4)*d^(1/4)*sqrt(x) + sqrt(d)*x + sqrt(c))/(c^(1/4)*d^(3/4)) + sqrt(2)*log(-sqrt(2)*c^(1/4)*d^(1/4)*sqrt(x) +
 sqrt(d)*x + sqrt(c))/(c^(1/4)*d^(3/4)))/d^3 + 2/231*(21*b^2*d^2*x^(11/2) - 33*(b^2*c*d - 2*a*b*d^2)*x^(7/2) +
 77*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*x^(3/2))/d^3

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 385, normalized size of antiderivative = 1.33 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=-\frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {3}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {3}{4}} a b c d + \left (c d^{3}\right )^{\frac {3}{4}} a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{2 \, d^{6}} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {3}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {3}{4}} a b c d + \left (c d^{3}\right )^{\frac {3}{4}} a^{2} d^{2}\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{2 \, d^{6}} + \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {3}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {3}{4}} a b c d + \left (c d^{3}\right )^{\frac {3}{4}} a^{2} d^{2}\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {c}{d}\right )^{\frac {1}{4}} + x + \sqrt {\frac {c}{d}}\right )}{4 \, d^{6}} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {3}{4}} b^{2} c^{2} - 2 \, \left (c d^{3}\right )^{\frac {3}{4}} a b c d + \left (c d^{3}\right )^{\frac {3}{4}} a^{2} d^{2}\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {c}{d}\right )^{\frac {1}{4}} + x + \sqrt {\frac {c}{d}}\right )}{4 \, d^{6}} + \frac {2 \, {\left (21 \, b^{2} d^{10} x^{\frac {11}{2}} - 33 \, b^{2} c d^{9} x^{\frac {7}{2}} + 66 \, a b d^{10} x^{\frac {7}{2}} + 77 \, b^{2} c^{2} d^{8} x^{\frac {3}{2}} - 154 \, a b c d^{9} x^{\frac {3}{2}} + 77 \, a^{2} d^{10} x^{\frac {3}{2}}\right )}}{231 \, d^{11}} \]

[In]

integrate(x^(5/2)*(b*x^2+a)^2/(d*x^2+c),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*((c*d^3)^(3/4)*b^2*c^2 - 2*(c*d^3)^(3/4)*a*b*c*d + (c*d^3)^(3/4)*a^2*d^2)*arctan(1/2*sqrt(2)*(sqr
t(2)*(c/d)^(1/4) + 2*sqrt(x))/(c/d)^(1/4))/d^6 - 1/2*sqrt(2)*((c*d^3)^(3/4)*b^2*c^2 - 2*(c*d^3)^(3/4)*a*b*c*d
+ (c*d^3)^(3/4)*a^2*d^2)*arctan(-1/2*sqrt(2)*(sqrt(2)*(c/d)^(1/4) - 2*sqrt(x))/(c/d)^(1/4))/d^6 + 1/4*sqrt(2)*
((c*d^3)^(3/4)*b^2*c^2 - 2*(c*d^3)^(3/4)*a*b*c*d + (c*d^3)^(3/4)*a^2*d^2)*log(sqrt(2)*sqrt(x)*(c/d)^(1/4) + x
+ sqrt(c/d))/d^6 - 1/4*sqrt(2)*((c*d^3)^(3/4)*b^2*c^2 - 2*(c*d^3)^(3/4)*a*b*c*d + (c*d^3)^(3/4)*a^2*d^2)*log(-
sqrt(2)*sqrt(x)*(c/d)^(1/4) + x + sqrt(c/d))/d^6 + 2/231*(21*b^2*d^10*x^(11/2) - 33*b^2*c*d^9*x^(7/2) + 66*a*b
*d^10*x^(7/2) + 77*b^2*c^2*d^8*x^(3/2) - 154*a*b*c*d^9*x^(3/2) + 77*a^2*d^10*x^(3/2))/d^11

Mupad [B] (verification not implemented)

Time = 5.46 (sec) , antiderivative size = 435, normalized size of antiderivative = 1.50 \[ \int \frac {x^{5/2} \left (a+b x^2\right )^2}{c+d x^2} \, dx=x^{3/2}\,\left (\frac {2\,a^2}{3\,d}+\frac {c\,\left (\frac {2\,b^2\,c}{d^2}-\frac {4\,a\,b}{d}\right )}{3\,d}\right )-x^{7/2}\,\left (\frac {2\,b^2\,c}{7\,d^2}-\frac {4\,a\,b}{7\,d}\right )+\frac {2\,b^2\,x^{11/2}}{11\,d}-\frac {{\left (-c\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{3/4}\,d^{1/4}\,\sqrt {x}\,{\left (a\,d-b\,c\right )}^2\,\left (a^4\,c^3\,d^4-4\,a^3\,b\,c^4\,d^3+6\,a^2\,b^2\,c^5\,d^2-4\,a\,b^3\,c^6\,d+b^4\,c^7\right )}{a^6\,c^4\,d^6-6\,a^5\,b\,c^5\,d^5+15\,a^4\,b^2\,c^6\,d^4-20\,a^3\,b^3\,c^7\,d^3+15\,a^2\,b^4\,c^8\,d^2-6\,a\,b^5\,c^9\,d+b^6\,c^{10}}\right )\,{\left (a\,d-b\,c\right )}^2}{d^{15/4}}-\frac {{\left (-c\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{3/4}\,d^{1/4}\,\sqrt {x}\,{\left (a\,d-b\,c\right )}^2\,\left (a^4\,c^3\,d^4-4\,a^3\,b\,c^4\,d^3+6\,a^2\,b^2\,c^5\,d^2-4\,a\,b^3\,c^6\,d+b^4\,c^7\right )\,1{}\mathrm {i}}{a^6\,c^4\,d^6-6\,a^5\,b\,c^5\,d^5+15\,a^4\,b^2\,c^6\,d^4-20\,a^3\,b^3\,c^7\,d^3+15\,a^2\,b^4\,c^8\,d^2-6\,a\,b^5\,c^9\,d+b^6\,c^{10}}\right )\,{\left (a\,d-b\,c\right )}^2\,1{}\mathrm {i}}{d^{15/4}} \]

[In]

int((x^(5/2)*(a + b*x^2)^2)/(c + d*x^2),x)

[Out]

x^(3/2)*((2*a^2)/(3*d) + (c*((2*b^2*c)/d^2 - (4*a*b)/d))/(3*d)) - x^(7/2)*((2*b^2*c)/(7*d^2) - (4*a*b)/(7*d))
+ (2*b^2*x^(11/2))/(11*d) - ((-c)^(3/4)*atan(((-c)^(3/4)*d^(1/4)*x^(1/2)*(a*d - b*c)^2*(b^4*c^7 + a^4*c^3*d^4
- 4*a^3*b*c^4*d^3 + 6*a^2*b^2*c^5*d^2 - 4*a*b^3*c^6*d))/(b^6*c^10 + a^6*c^4*d^6 - 6*a^5*b*c^5*d^5 + 15*a^2*b^4
*c^8*d^2 - 20*a^3*b^3*c^7*d^3 + 15*a^4*b^2*c^6*d^4 - 6*a*b^5*c^9*d))*(a*d - b*c)^2)/d^(15/4) - ((-c)^(3/4)*ata
n(((-c)^(3/4)*d^(1/4)*x^(1/2)*(a*d - b*c)^2*(b^4*c^7 + a^4*c^3*d^4 - 4*a^3*b*c^4*d^3 + 6*a^2*b^2*c^5*d^2 - 4*a
*b^3*c^6*d)*1i)/(b^6*c^10 + a^6*c^4*d^6 - 6*a^5*b*c^5*d^5 + 15*a^2*b^4*c^8*d^2 - 20*a^3*b^3*c^7*d^3 + 15*a^4*b
^2*c^6*d^4 - 6*a*b^5*c^9*d))*(a*d - b*c)^2*1i)/d^(15/4)